Bioinspired fractal electrodes for solar energy storages
نویسندگان
چکیده
Solar energy storage is an emerging technology which can promote the solar energy as the primary source of electricity. Recent development of laser scribed graphene electrodes exhibiting a high electrical conductivity have enabled a green technology platform for supercapacitor-based energy storage, resulting in cost-effective, environment-friendly features, and consequent readiness for on-chip integration. Due to the limitation of the ion-accessible active porous surface area, the energy densities of these supercapacitors are restricted below ~3 × 10-3 Whcm-3. In this paper, we demonstrate a new design of biomimetic laser scribed graphene electrodes for solar energy storage, which embraces the structure of Fern leaves characterized by the geometric family of space filling curves of fractals. This new conceptual design removes the limit of the conventional planar supercapacitors by significantly increasing the ratio of active surface area to volume of the new electrodes and reducing the electrolyte ionic path. The attained energy density is thus significantly increased to ~10-1 Whcm-3- more than 30 times higher than that achievable by the planar electrodes with ~95% coulombic efficiency of the solar energy storage. The energy storages with these novel electrodes open the prospects of efficient self-powered and solar-powered wearable, flexible and portable applications.
منابع مشابه
Effect of Wind Turbine, Solar Cells and Storages in Short Term Operation of Coupled Electricity and Gas Infrastructures in Different Climates
The biggest challenges faced in big cities are greenhouse gas emission and growing energy needs. Efficient utilization of existing infrastructures has a prominent role in response to the challenges. Energy hub approach embraces performance of different energy networks. Energy hub is defined as a super node in electrical system receiving distinctive energy carriers such as gas and electricity in...
متن کاملComparison of Binary and Ternary Compositions of Ni-Co-Cu Oxides/VACNTs Electrodes for Energy Storage Devices with Excellent Capacitive Behaviour
Electrochemical performance of binary and ternary oxides composed of Ni, Co and Cu produced over a 3-dimensional substrate of vertically aligned carbon nano-tubes (VACNT) as electrodes for aqueous energy sources, is reported and compared in this paper. VACNTs were fabricated inside a DC-plasma enhanced chemical vapor deposition chamber and composite materials fabricated by thermal decomp...
متن کاملFactors influencing the performance and efficiency of solar water pumping systems: A review
The world is having an energy crisis and currently there is a strong drive towards renewable energy. A renewable energy option is solar energy, where by means of photovoltaic (PV) modules electrical energy can be produced. A residential as well as industrial application for these PV modules is solar water pumping systems. Disadvantages of solar water pumping systems are low performance and low ...
متن کاملBioinspired Organic PV Cells Using Photosynthetic Pigment Complex for Energy Harvesting Materials
متن کامل
SILAR Sensitization as an Effective Method for Making Efficient Quantum Dot Sensitized Solar Cells
CdSe quantum dots were in situ deposited on various structures of TiO2 photoanode by successive ionic layer adsorption and reaction (SILAR). Various sensitized TiO2 structures were integrated as a photoanode in order to make quantum dot sensitized solar cells. High power conversion efficiency was obtained; 2.89 % (Voc=524 mV, Jsc=9.78 mA/cm2, FF=0.56) for the cells that sensitized by SILAR meth...
متن کامل